Normal Form Theory for Relative Equilibria and Relative Periodic Solutions

نویسندگان

  • JEROEN S. W. LAMB
  • IAN MELBOURNE
چکیده

We show that in the neighbourhood of relative equilibria and relative periodic solutions, coordinates can be chosen so that the equations of motion, in normal form, admit certain additional equivariance conditions up to arbitrarily high order. In particular, normal forms for relative periodic solutions effectively reduce to normal forms for relative equilibria, enabling the calculation of the drift of solutions bifurcating from relative periodic solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit multiple singular periodic solutions and singular soliton solutions to KdV equation

 Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...

متن کامل

Dynamics near relative equilibria: Nongeneric momenta at a 1:1 group-reduced resonance

An interesting situation occurs when the linearized dynamics of the shape of a formally stable Hamiltonian relative equilibrium at nongeneric momentum 1:1 resonates with a frequency of the relative equilibrium’s generator. In this case some of the shape variables couple to the group variables to first order in the momentum perturbation, and the first order perturbation theory implies that the r...

متن کامل

Existence of Relative Periodic Orbits near Relative Equilibria

We show existence of relative periodic orbits (a.k.a. relative nonlinear normal modes) near relative equilibria of a symmetric Hamiltonian system under an appropriate assumption on the Hessian of the Hamiltonian. This gives a relative version of the Moser-Weinstein theorem.

متن کامل

State Space Geometry of a Spatio-temporally Chaotic Kuramoto-sivashinsky Flow

The continuous and discrete symmetries of the Kuramoto-Sivashinsky system restricted to a spatially periodic domain play a prominent role in shaping the invariant sets of its spatiotemporally chaotic dynamics. The continuous spatial translation symmetry leads to relative equilibria (traveling wave) and relative periodic orbit solutions. The discrete symmetries lead to existence of equilibrium a...

متن کامل

Symmetry reduction in high dimensions, illustrated in a turbulent pipe.

Equilibrium solutions are believed to structure the pathways for ergodic trajectories in a dynamical system. However, equilibria are atypical for systems with continuous symmetries, i.e., for systems with homogeneous spatial dimensions, whereas relative equilibria (traveling waves) are generic. In order to visualize the unstable manifolds of such solutions, a practical symmetry reduction method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006